# **General Description**

With human-machine interfacing requiring ever higher functionality and intuitiveness, touch panel type interfaces are rapidly becoming the norm for the new millennium.

TC312 is a 12 channel capacitive sensing device. The device can operate as a controller for 12 keys.


#### Features

- $\Box$  The device controls 12 completely independent touch sensing keys
- □ Autocal for life no adjustments required
- □ System cost reduction
- □ I2C interface and BCD code output
- □ Reliability through reducing system complexity
- □ Embedded noise immunity circuit
- □ Low current consumption in IDLE state
- □ RoHS compliant SSO-24 package

# Applications

- □ Media Players
- $\Box$  Consumer Electronics
- $\Box$  Home appliances
- □ Keypads
- □ Mechanical switch replacement
- □ Sealed control panels, keypads

# **Pin Diagram**



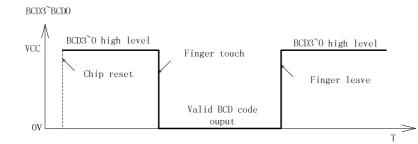
# **Pin Description**

| Pin | Name | I/O            | Description             |
|-----|------|----------------|-------------------------|
| 1   | VSS  | Ground         | Supply Ground           |
| 2   | VREG | Analog Output  | Reference output        |
| 3   | SEN  | Analog I/O     | Sensitivity Set         |
| 4   | CX0  | Analog I/O     | Sensor pad for chanel0  |
| 5   | CX1  | Analog I/O     | Sensor pad for chanel1  |
| 6   | CX2  | Analog I/O     | Sensor pad for chanel2  |
| 7   | CX3  | Analog I/O     | Sensor pad for chanel3  |
| 8   | CX4  | Analog I/O     | Sensor pad for chanel4  |
| 9   | CX5  | Analog I/O     | Sensor pad for chanel5  |
| 10  | CX6  | Analog I/O     | Sensor pad for chanel6  |
| 11  | CX7  | Analog I/O     | Sensor pad for chanel7  |
| 12  | CX8  | Analog I/O     | Sensor pad for chanel8  |
| 13  | CX9  | Analog I/O     | Sensor pad for chanel9  |
| 14  | CX10 | Analog I/O     | Sensor pad for chanel10 |
| 15  | CX11 | Analog I/O     | Sensor pad for chanel11 |
| 16  | BCD3 | Digital Output | BCD bit3 output         |
| 17  | BCD2 | Digital Output | BCD bit2 output         |
| 18  | BCD1 | Digital Output | BCD bit1 output         |
| 19  | BCD0 | Digital Output | BCD bit0 output         |
| 20  | ASEL | Digital In     | Address select pin      |
| 21  | SCL  | Digital In     | I2C clock pin           |
| 22  | SDA  | Digital I/O    | I2C data pin            |
| 23  | NC   |                |                         |
| 24  | VCC  | Pwr            | Power in                |

#### SEN

Sensitivity set pin, the capacitance range is  $10 \text{pf} \sim 100 \text{pf}$ , the smaller the value the higher the sensitivity.

#### VREG


Reference voltage output, connected to 4.7nf capacitance.

#### CX0~CX8

Capacitive sense pins connected to electrodes. Series resistance is  $3K\Omega$ .

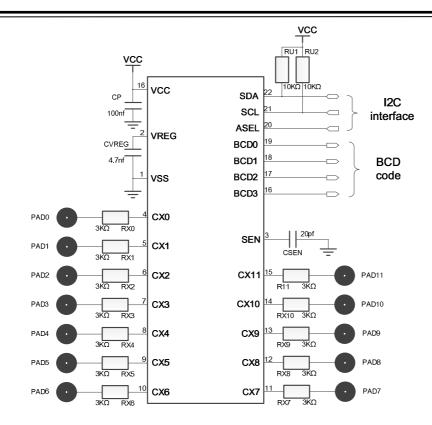
#### BCD0~BCD3

BCD code output pin. If no touch is detected, all the BCD pins output high level. When touch is detected, those pin will output corresponding BCD code(if more than one touch is detected at the same time, the highest priority BCD code will be outputted.

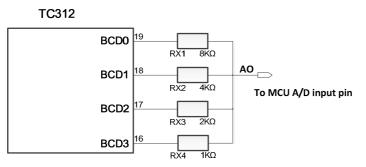


#### The output priority is reduced by CX0 to CX11.

|      |          | ··· ·· ·· · · · · |       | 1      | 5       |       |     |     |     |      |      |      |      |      |      |
|------|----------|-------------------|-------|--------|---------|-------|-----|-----|-----|------|------|------|------|------|------|
| ●tou | ch is de | etected           | ×no t | ouch - | -regarc | iless |     | T   |     |      |      |      |      |      |      |
| CX0  | CX1      | CX2               | CX3   | CX4    | CX5     | CX6   | CX7 | CX8 | CX9 | CX10 | CX11 | BCD3 | BCD2 | BCD1 | BCD0 |
| •    | -        | -                 | -     | -      | -       | -     | -   | -   | -   | -    | -    | 0    | 0    | 0    | 0    |
| ×    | •        |                   |       | -      |         | -     | -   | -   | -   | -    | -    | 0    | 0    | 0    | 1    |
| ×    | ×        | •                 | —     | —      | —       | —     | —   | -   | _   | _    | _    | 0    | 0    | 1    | 0    |
| ×    | ×        | ×                 | •     | -      | -       | -     | -   | -   | -   | -    | -    | 0    | 0    | 1    | 1    |
| ×    | ×        | ×                 | ×     | •      |         | -     |     | -   | _   | -    | -    | 0    | 1    | 0    | 0    |
| ×    | ×        | ×                 | ×     | ×      | •       | —     | _   | —   | —   | _    | _    | 0    | 1    | 0    | 1    |
| ×    | ×        | ×                 | ×     | ×      | ×       | •     | _   | —   | —   | _    | _    | 0    | 1    | 1    | 0    |
| ×    | ×        | ×                 | ×     | ×      | ×       | ×     | •   | —   | —   | _    | _    | 0    | 1    | 1    | 1    |
| ×    | ×        | ×                 | ×     | ×      | ×       | ×     | ×   | •   | -   | -    | -    | 1    | 0    | 0    | 0    |
| ×    | ×        | ×                 | ×     | ×      | ×       | ×     | ×   | ×   | •   | _    | _    | 1    | 0    | 0    | 1    |
| ×    | ×        | ×                 | ×     | ×      | ×       | ×     | ×   | ×   | ×   | •    | _    | 1    | 0    | 1    | 0    |
| ×    | ×        | ×                 | ×     | ×      | ×       | ×     | ×   | ×   | ×   | ×    | •    | 1    | 0    | 1    | 1    |
| ×    | ×        | ×                 | ×     | ×      | ×       | ×     | ×   | ×   | ×   | ×    | ×    | 1    | 1    | 1    | 1    |


#### ASEL

I2C device address select pin.


#### SCL,SDA

SCL is I2C clock input pin and SDA is I2C data I/O pin. SDA pin have a weak internal pull-up resistor.

# **Application Circuit**



# **Analog Voltage Output**



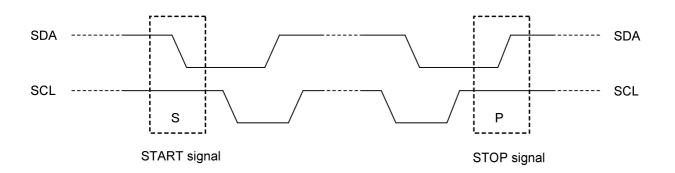
When using the BCD port to generate analog voltage, the corresponding relationship between the key and the AO voltage is as follows:

| KEY              | BCD[3:0]output | Voltage of AO |
|------------------|----------------|---------------|
| KEY0(CX0) Pushed | 0000           | 0v            |
| KEY1(CX1) Pushed | 0001           | 0.067*VCC     |
| KEY2(CX2) Pushed | 0010           | 0.133*VCC     |
| KEY3(CX3) Pushed | 0011           | 0.200*VCC     |
| KEY4(CX4) Pushed | 0100           | 0.267*VCC     |
| KEY5(CX5) Pushed | 0101           | 0.333*VCC     |
| KEY6(CX6) Pushed | 0110           | 0.400*VCC     |

TC312\_DataSheet\_V1.1

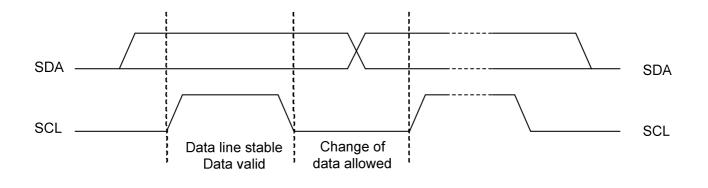
| KEY7(CX7) Pushed   | 0111 | 0.467*VCC |
|--------------------|------|-----------|
| KEY8(CX8) Pushed   | 1000 | 0.533*VCC |
| KEY9(CX9) Pushed   | 1001 | 0.600*VCC |
| KEY10(CX10) Pushed | 1010 | 0.667*VCC |
| KEY11(CX11) Pushed | 1011 | 0.733*VCC |
| NO KEY             | 1111 | VCC       |

# **I2C Interface**


#### 1. Start and Stop signal

#### Start signal(S)

A high to low transition on the SDA line while SCL is high defines a START condition.


#### Stop signal(P)

A low to high transition on the SDA line while SCL is high defines a STOP condition.



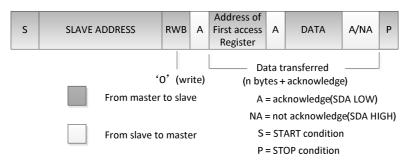
#### 2. Data Validity

The data on the SDA line must be stable during the high period of the SCL line. The high or low state of the SDA line can be changed when the clock signal on the SCL line is LOW.



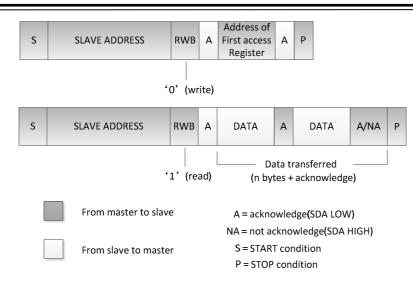
#### 3. Byte format

The byte structure is composed with 8 Bit data and an acknowledge signal.


#### 4. Device address

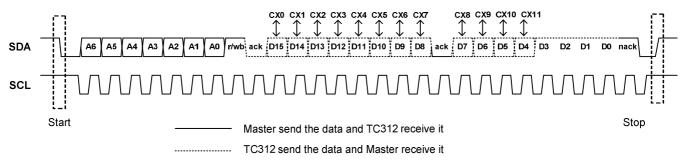
Device address of TC312 is selected by the level of ASEL port.

|                           | ASEL high level | ASEL floating | ASEL low level |
|---------------------------|-----------------|---------------|----------------|
| Address (A[6:0])          | 44H             | 40H           | 42H            |
| Read command (A[6:0]+RWB) | 89H             | 81H           | 85H            |
| Write command(A[6:0]+RWB) | 88H             | 80H           | 84H            |


#### 5. TC312 is a slave device, supporting Read and Write operation mode

- 1) Write operation
  - $\blacksquare$  The first byte gives the device address plus the direction bit (RWB = 0).
  - The second byte contains the internal address of the first register to be accessed.
  - The third byte is what to be written in the internal register.
  - The transfer lasts until stop conditions are encountered.
  - The TC312 acknowledges every byte transfer.




2) Read operation

The address of the first register to read is programmed in a write operation without data, and terminated by the stop condition. Then, another start is followed by the device address and R/W=1. All following bytes are now data to be read at successive positions starting from the initial address.



#### 3) Simplified read operation

The default address of read register is 08H. So, if no other registers have been accessed, the key information can be read as the following diagram directly.



| Degister  | Address | R/W | Initial Value(BIN) | Register function description |      |      |        |      |      |        |        |
|-----------|---------|-----|--------------------|-------------------------------|------|------|--------|------|------|--------|--------|
| Register  | (HEX)   |     |                    | Bit7                          | Bit6 | Bit5 | Bit4   | Bit3 | Bit2 | Bit1   | Bit0   |
| SenSet0   | 00H     | W   | 0111 1001          | SENSET0[7:0]                  |      |      |        |      |      |        |        |
| SenSetCOM | 01H     | W   | 0111 1001          | SENSETCOM[7:0]                |      |      |        |      |      |        |        |
| CTRLO     | 02H     | W   | 100 0 0 0 11       | SLPCYC[2:0]                   |      |      | SLPNOW | HOLD | KVF  | RTM[1] | RTM[0] |
| Output1   | 08H     | R   | 0000 0000          | CH0                           | CH1  | CH2  | CH3    | CH4  | CH5  | CH6    | CH7    |
| Output2   | 09H     | R   | 0000 0000          | CH8                           | CH9  | CH10 | CH11   |      |      |        |        |

#### 6. TC312 control registers list

#### 6.1 Sensitivity Set register SenSet0(Address 00H) SenSetCOM (Address 01H)

SENSET0[7:0] SENSETCOM[7:0] Sensitivity setting for channel CX0

Sensitivity setting for other channels

There are 16 values for setting sensitivity. Sensitivity from low to high : 04H , 15H , 25H , 36H , 47H 58H , 68H , 79H , 8AH , 9BH , ACH , BCH , CDH , DEH , EFH , FFH .The initial default value is 79H

Channel CX0 can be used as a proximity sensor because SENSET0[7:0] is independent .If channel CX0 is used as a common key, SENSET0[7:0] should be just set same as SENSETCOM[7:0]

#### 6.2 Control register CTRL0(Address 02H)

| SLPCYC[2:0]       | Setting for interval of sampling in idle state |      |      |      |            |      |      |      |
|-------------------|------------------------------------------------|------|------|------|------------|------|------|------|
| SLPCYC[2:0]       | 0                                              | 1    | 2    | 3    | 4(default) | 5    | 6    | 7    |
| Sampling interval | infinite                                       | 0.5T | 1.5T | 2.5T | 3.5T       | 4.5T | 5.5T | 6.5T |
|                   | mmme                                           | 0.01 | 1.01 | 2.01 | 0.01       | 4.01 | 0.01 | 0.01 |

 $T\approx$ 120ms

#### **SLPNOW**

| SLPNOW | 1                           | 0(default)                 |  |  |  |  |  |  |  |
|--------|-----------------------------|----------------------------|--|--|--|--|--|--|--|
|        | Enter idle state right now, | If no key is detected for  |  |  |  |  |  |  |  |
|        | when no key detected        | 75S, then enter idle state |  |  |  |  |  |  |  |

HOLD

| HOLD | 1                     | 0(default)                     |
|------|-----------------------|--------------------------------|
|      | Stop auto calculation | Auto calculation for reference |

#### 6.3 Output register for key Output0 (Address 08H) Output1(Address 09H)

CH[11:0] Respectively corresponding to channel CX[8:0]. When key is detected ,it's zero, otherwise, iťs 1.

#### **PCB Layout Notice**

1. VCC and VSS power line should be drawn alone, and can not share power line with other chips(micro-controller and LCD driver, etc.). So as to prevent the chip from being affected by noise signal going throng the power line.

CP, CVREG, CSEN these three capacitances should be placed as close as possible to the chip. And the series 2. resistors on wire of sense pad should also be placed as close as possible to the chip.

3. The larger area of grounded copper, the more immunity to noise Interference.

4. The sense traces and pad should be paid more attention to. The chip should be placed as close as possible to sense pad. The sense traces should be drawn to sense pad directly. The length of the different sense traces is not necessarily equal. The width of sense traces should be as small as possible. There should not be other power line and signal traces around the sense trace. If it can not be avoided, the other traces should cross the sense trace vertically. The distance between sense pads should be greater than 5mm. The distance between sense pad and grounded copper should be greater than 1.5mm.

# **Absolute Maximum Rating \***

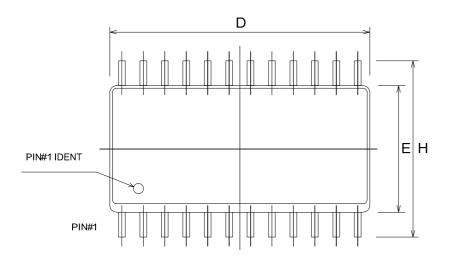
| Operating temperature                                | $-40 \sim +85^{\circ}C$       |
|------------------------------------------------------|-------------------------------|
| Storage temp                                         | $\textbf{-50} \sim +150^{o}C$ |
| VCC                                                  | $-0.3 \sim +6.5 V$            |
| Max continuous pin current, any control or drive pin | ±10mA                         |

Voltage forced onto any pin

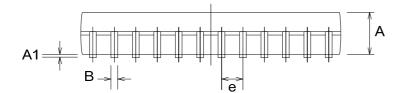
 $-0.3V \sim (Vcc+0.3)$  Volts

\* NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.

### **Electrical Characteristics**


| TA = 25 | °C |
|---------|----|
|---------|----|

| Characteristics         | Symbo    | Condition      | Min | Тур  | Max     | Units |
|-------------------------|----------|----------------|-----|------|---------|-------|
| Operating voltage       | Vcc      |                | 2.5 |      | 6.5     | V     |
| Current consumption     | Idd      | VCC=5.0V       |     | 1.15 |         | mA    |
|                         |          | VCC=3.0V       |     | 620  |         | uA    |
|                         |          | VCC=5.0V       |     | 40   |         | uA    |
|                         |          | &SLEEP         |     |      |         |       |
|                         |          | VCC=3.0V       |     | 22   |         | uA    |
|                         |          | &SLEEP         |     |      |         |       |
| Self calibration time   | Tini     |                |     | 300  |         | ms    |
| after chip reset        |          |                |     |      |         |       |
| Range of capacitance on | СХ       |                |     |      | 2.5*CSE |       |
| Pad                     |          |                |     |      | Ν       |       |
| Output impedance        | Zo       | Low voltage    |     | 50   |         | Ohm   |
| (open drain)            |          | Hi-z           |     | 100M |         |       |
|                         |          |                |     |      |         |       |
| Output sink current     | Isk      | VCC=5V         |     |      | 10.0    | mA    |
| Minimum detective       | delta_CX | CSEN=15pf      |     | 0.2  |         | pF    |
| capacitance difference  |          |                |     |      |         |       |
| Sample cycle            | Tsi      | Normal working |     | 13   |         | ms    |
|                         |          | state          |     |      |         |       |
| Time of Enter IDLE      | Tidle    | No key         |     | 75   |         | S     |
| state                   |          |                |     |      |         |       |


# **ESD** Characteristics

| Mode  | Polarity | Max   | Reference |
|-------|----------|-------|-----------|
| H.B.M | POS/NEG  | 8000V | VDD       |
|       |          | 8000V | VSS       |
|       |          | 8000V | P to P    |
| M.M   | POS/NEG  | 500V  | VDD       |
|       |          | 500V  | VSS       |
|       |          | 500V  | P to P    |

# Package Diagram (SSOP-24)







|        | Dimensions In<br>Millimeters |       | Dimensions In Inches |       |
|--------|------------------------------|-------|----------------------|-------|
| Symbol |                              |       |                      |       |
|        | Min                          | Max   | Min                  | Max   |
| А      | 1.25                         | 1.55  | 0.049                | 0.061 |
| A1     | 0.05                         | 0.25  | 0.002                | 0.010 |
| В      | 0.194                        | 0.314 | 0.008                | 0.012 |
| С      | 0.15                         | 0.25  | 0.006                | 0.010 |
| D      | 8.55                         | 8.75  | 0.337                | 0.344 |
| E      | 3.80                         | 4.00  | 0.015                | 0.157 |
| е      | 0.635                        |       | 0.025                |       |
| Н      | 5.70                         | 6.30  | 0.224                | 0.248 |
| L      | 0.30                         | 0.90  | 0.012                | 0.035 |
| θ      | 0°                           | 7°    | 0°                   | 7°    |