

TC315A 十五通道低功耗电容触摸芯片

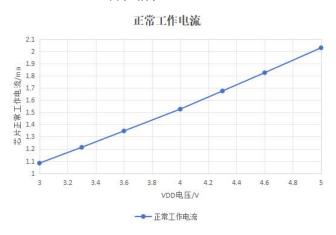
1.特性

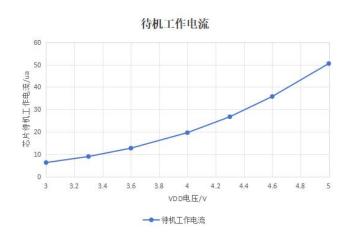
- □ 工作电压范围: 2.9v~5.5v
- □ 待机电流: 6ua@VDD=3V
- □ 可由外部电容(CSEN)或内部寄存器调整灵敏度
- □ 输出 BCD 码和 I2C 接口同时有效
- □ 最长输出时间为 50 秒,可通过内部寄存器将输出改为持续输出
- □ 按键最长响应时间: 待机模式下约 230~370ms,
- 工作电压越高最长响应时间越长
- □ 自动校准功能,自动校准环境变化
- □ 降低系统复杂度提高稳定性,系统低成本
- □ 嵌入的共模干扰去除电路, 抗干扰性能优良
- □ HBM ESD: 大于 8KV MM ESD: 大于 500V
- □ RoHS 兼容的 SSOP-24(0.635)封装

简化原理图(I2C 输出)

2.应用

- □ 智能门锁、空调、洗衣机、微波炉等家电产品
- □ 工业控制面板、医疗控制面板、数字化白板
- □ 蓝牙耳机、电子玩具
- □ 智能家居

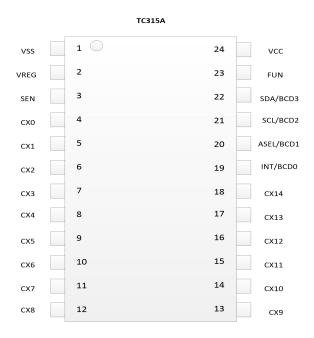

- 口 个人护理产品
- □ 传统按键替换


3.说明

TC315A 是一款 15 路低功耗、超强抗 EMC 干扰的电容触摸传感器 ASIC 芯片,可以广泛的满足不同消费类应用的要求。内嵌自有核心技术的超强抗干扰电路,具有快速自电容感应技术,实现极高灵敏度和低待机功耗,同时降低系统复杂度和提高产品稳定性。

此器件采用 0.635mm 的 SSOP-24 封装。

功耗情况(3~5V)



目录

1.特性	1
2 应用	1
3.说明	1
	3
5.管脚描述	
6.芯片功能	
7.应用原理图	
8.I2C 接口	
9.PCB 版图注意事项	
10.额定值	
- いたに 11.电气特性	
12.ESD 特性	
13.封装尺寸图 (SSOP-24)	
附录 1: TC315A 休眠模式功耗	
附录 2:通过 I2C 接口读写 TC315A 的 C 语言演示程序	
1) I2C 写控制寄存器函数	
1) I2C 马丘阿司伊福因数	17
4/14℃ 大小以 灰 「	10

4.管脚图示

5.管脚描述

引脚	名称	输入/输出	描述
1	VSS	电源负极	地参考
2	VREG	模拟输出	内部参考源输出
3	SEN	模拟输入输出	灵敏度电容
4	CXO	模拟输入输出	感应输入 0 (不使用时悬空)
5	CX1	模拟输入输出	感应输入 1 (不使用时悬空)
6	CX2	模拟输入输出	感应输入 2 (不使用时悬空)
7	CX3	模拟输入输出	感应输入 3 (不使用时悬空)
8	CX4	模拟输入输出	感应输入 4 (不使用时悬空)
9	CX5	模拟输入输出	感应输入 5 (不使用时悬空)
10	CX6	模拟输入输出	感应输入 6 (不使用时悬空)
11	CX7	模拟输入输出	感应输入 7 (不使用时悬空)
12	CX8	模拟输入输出	感应输入 8 (不使用时悬空)
13	CX9	模拟输入输出	感应输入 9 (不使用时悬空)
14	CX10	模拟输入输出	感应输入10(不使用时悬空)
15	CX11	模拟输入输出	感应输入11(不使用时悬空)
16	CX12	模拟输入输出	感应输入12(不使用时悬空)
17	CX13	模拟输入输出	感应输入13(不使用时悬空)
18	CX14	模拟输入输出	感应输入14(不使用时悬空)
19	INT *1	输出	通知主机有按键
	BCD0 * 2	输出	BCD 码 0 位

20	ASEL *1	输入	设置 I2C 地址
	BCD1 * 2	输出	BCD 码 1 位
21	SCL *1	输入	I2C 时钟输入
	BCD2 * 2	输出	BCD 码 2 位
22	SDA *1	输入输出	I2C 数据输入输出
	BCD3 * 2	输出	BCD 码 3 位
23	FUN	输入	悬空选择 I2C 输出
			接上拉电阻选择 BCD 输出
24	VCC	电源正极	供电电压输入

*1 FUN端口悬空

*2FUN端口接上拉电阻

SEN

此管脚电容大小为10pf~100pf, 电容越小灵敏度越高。

VREG

内部参考源输出,接2.2nf电容。

CX0°CX14

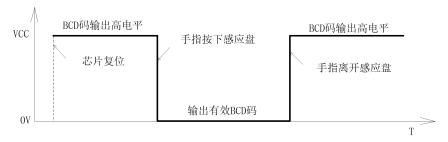
感应管脚,串联电阻是3KΩ。

INT

有按键时,输出低电平;无按键时,是高阻态。

ASEL

设置I2C地址端口


SCL, SDA

SCL 是 I2C 时钟输入端口。SDA 是 I2C 数据输入输出端口。 SDA 和 SCL 端口有内部弱上拉。

BCD0~BCD3

无按键时,输出高电平;有按键时,输出按键对应的BCD码(多按键时,只输出优先级最高的按键码)。

BCD码输出

TC315A可以检测多个按键同时有效。但是BCD码输出不能同时输出多个按键值,只能输出当前时刻优先级最高的那个按键。无按键时,BCD[3:0]输出为F。按键优先级由CX0到CX14依次降低。

	表示	有触	莫	×表示	尼无触	摸	一表	示无论	是否	有触接	莫							
CXO	CX1	CX2	СХЗ	CX4	CX5	CX6	CX7	CX8	6XO	CX10	CX11	CX12	CX13	CX14	всрз	BCD2	BCD1	BCD0
•	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0	0	0	0
×	•	_	_	_	_	_	_	_	_	_	_	_	_	_	0	0	0	1
×	×	•	_	_	_	_	_	_	_	_	_	_	_	_	0	0	1	0
×	×	×	•	_	_	_	_	_	_	_	_	_	_	_	0	0	1	1
×	×	×	×	•	_	_	_	_	_	_	-	_	_	_	0	1	0	0
×	×	×	×	×	•	_	_	_	_	_	_	_	_	_	0	1	0	1
×	×	×	×	×	×	•	_	_	_	_	_	_	_	_	0	1	1	0
×	×	×	×	×	×	×	•	_	_	_	_	_	_	_	0	1	1	1
×	×	×	×	×	×	×	×	•	_	_	_	_	_	_	1	0	0	0
×	×	×	×	×	×	×	×	×	•	_	_	_	_	_	1	0	0	1
×	×	×	×	×	×	×	×	×	×	•	_	_	_	_	1	0	1	0
×	×	×	×	×	×	×	×	×	×	×	•	_	_	_	1	0	1	1
×	×	×	×	×	×	×	×	×	×	×	×	•	_	_	1	1	0	0
×	×	×	×	×	×	×	×	×	×	×	×	×	•	_	1	1	0	1
×	×	×	×	×	×	×	×	×	×	×	×	×	×	•	1	1	1	0
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	1	1	1	1

6.芯片功能

6.1 初始化时间

上电复位后,芯片需要600ms进行初始化,计算感应管脚的环境电容,然后才能正常工作。

6.2 灵敏度

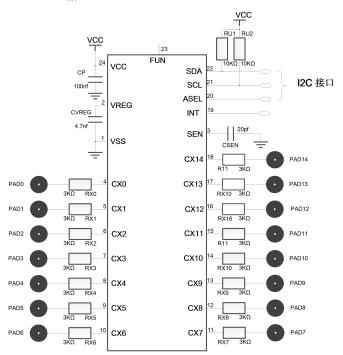
灵敏度由SEN端口接的电容值决定。数值越小,灵敏度越高。

6.3 自校正

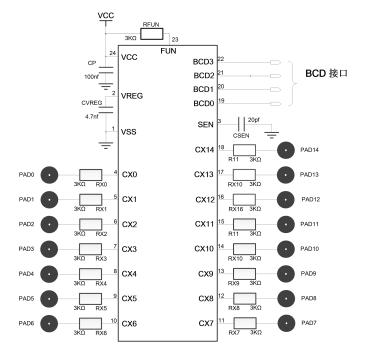
根据外部环境温度和湿度等的漂移,芯片会一直调整每个按键的电容基准参考值。从检测到按键开始,芯片会停止校正一段时间,这段时间大约50秒。然后芯片会继续自校正,也就是说检测按键有效的时间不会超过50秒。通过设置寄存器中的KVF位可以修改为一直输出有效。

6.4 触摸反应时间

每个通道大约每隔20ms采样一次。经过按键消抖处理以后,检测到按键按下的反应时间大概是110毫秒,检测按键离开的反应时间大概是70毫秒。所以检测按键的最快频率大概是每秒5次。如果想提高反应速度,可以设置内部寄存器,详见"8.6.2 控制寄存器 CTRL0中的RTM[1:0]"


6.5 睡眠模式

如果在一段时间内(18秒左右)没有检测到按键并且SDA端口一直保持高电平,芯片会自动进入省电模式。只要让SDA保持高电平时间不超过18秒左右,芯片就不会进入睡眠模式。在睡眠模式中,按键的采样间隔会变长,电流消耗(Idd)会减小。如果检测到按键,芯片会马上离开睡眠模式,进入正常模式。



7.应用原理图

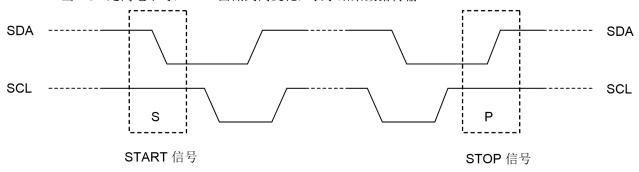
1)FUN 悬空 I2C 输出

2) FUN 接上拉电阻 BCD 输出

注意:

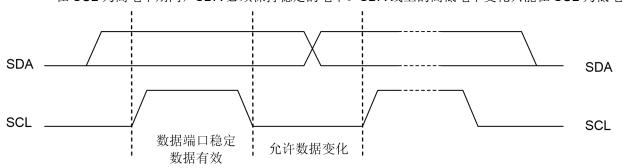
1. CSEN 是灵敏度设置电容,取值范围是最小10pf,最大100pf,电容值越小灵敏度越高。

8.I2C 接口


8.1 Start 和 Stop 信号

Start 信号(S)

当 SCL 是高电平时,SDA 由高到底变化,表示开始传输数据。


Stop 信号(P)

当 SCL 是高电平时,SDA 由低到高变化,表示结束数据传输。

8.2 数据有效

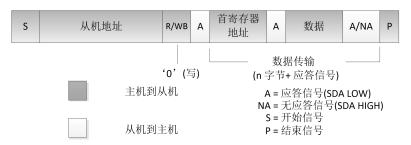
在 SCL 为高电平期间,SDA 必须保持稳定的电平。SDA 线上的高低电平变化只能在 SCL 为低电平期间。

8.3 字节格式

字节由8位数据和一个应答信号组成

8.4 器件地址

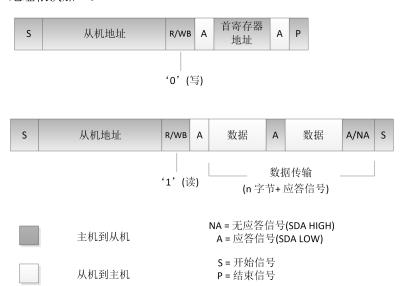
TC315A 的器件地址由 ASEL 端口电压决定。


	ASEL 为高电平	ASEL 悬空	ASEL 为低电平
地址 (A[6:0])	44H	40H	42H
读命令 (A[6:0]+RWB)	89H	81H	85H
写命令 (A[6:0]+RWB)	88H	80H	84H

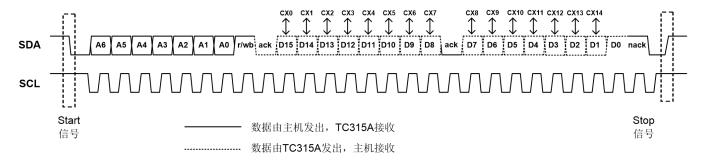
8.5 操作模式

TC315A 是从器件, 支持读写两种操作模式:

- 1) 写操作:
 - 首字节由 7 位从机地址和一位读写位组成(RWB=0)


- 第二字节是要访问的内部寄存器地址
- 下一个字节是要写入寄存器的内容
- 继续写入下一个寄存器,直到 STOP 信号出现
- 收到数据后 TC315A 会发送应答信号

2) 读操作:


读操作的首寄存器地址由不含数据的写操作指定,由 STOP 信号结束。

然后主机送出开始信号,和器件地址和读取位(R/WB=1),接下来的数据地址,是由首地址开始,然后地址依次加一。

3) 简化的读操作

TC315A 的默认读寄存器地址为 00H。所以如果没有写过其它寄存器,就可以通过下面的时序直接读取按键信息。

8.6 TC315A 控制寄存器列表

寄存器	地址	读写	初始值(BIN)	寄存器功能描述							
可行命	(HEX)			Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Output1	00Н	R	1111 1111	СНО	CH1	CH2	CH3	CH4	CH5	CH6	CH7
Output2	01H	R	1111 1111	CH8	CH9	CH10	CH11	CH12	CH13	CH14	
CTRL0	02H	W	011 1 1001	SLPCYC[2:0] RTM SENSETCOM[3		OM[3:0]					
CTRL1	03H	W	1000 0000	CHEEN	CHCDEN	CHABEN	CH89EN	CH67EN	CH45EN	CH23EN	CH01EN

8.6.1 按键信息寄存器 Output1 (地址 00H) Output2 (地址 01H)

CH[14:0] 分别对应 CX[14:0]的按键情况。无按键时为 1,有按键时为零。

8.6.2 控制寄存器 0 CTRL0 (地址 02H)

SENSETCOM[3:0] 通道灵敏度设置

共有 15 档灵敏度可以设置,由低到高为: 【F】【E】【D】【C】【B】【A】【9】【8】【7】【6】【5】

[4] [3] [2] [1] o

RTM 按键反应速度设置

RTM	0	1 (默认值)
按键有效判断	3 个采样周期	6 个采样周期
按键无效判断	1 个采样周期	4 个采样周期

SLPCYC[2:0] 睡眠时,采样周期间隔设置

	SLPCYC[2:0]	0	1	2	3 (默认值)	4	5	6	7
Ī	采样间隔	无穷大	1T	2T	3T	4T	5T	6T	7T

T≈87ms Vdd=3v

8.6.3 控制寄存器 1 CTRL1(地址 03H)

控制 CH0 和 CH1 通道在睡眠时,是否可以唤醒。0:不能唤醒;1:可以唤醒 CH01EN CH23EN 控制 CH2 和 CH3 通道在睡眠时,是否可以唤醒。0:不能唤醒;1:可以唤醒 CH45EN 控制 CH4 和 CH5 通道在睡眠时,是否可以唤醒。0:不能唤醒; 1:可以唤醒 控制 CH6 和 CH7 通道在睡眠时,是否可以唤醒。0:不能唤醒;1:可以唤醒 CH67EN 控制 CH8 和 CH9 通道在睡眠时,是否可以唤醒。0:不能唤醒;1:可以唤醒 CH89EN CHABEN 控制 CH10 和 CH11 通道在睡眠时,是否可以唤醒。0:不能唤醒;1:可以唤醒 控制 CH12 和 CH13 通道在睡眠时,是否可以唤醒。0:不能唤醒; 1:可以唤醒 CHCDEN CHEEN 控制 CH14 通道在睡眠时,是否可以唤醒。0:不能唤醒; 1:可以唤醒

9.PCB 版图注意事项

1. VCC 和 VSS 电源线要单独走线,不能和其它芯片(单片机和 LCD 驱动芯片等)共用电源走线。以免

使其它芯片的干扰信号通过电源线引到触摸芯片。

- 2. CP, CVREG, CSEN 三个电容必须靠近芯片放置。感应线上串联的 CXO[~]CX14 电阻,靠近芯片放置为宜。
 - 3. 尽量大的铺地面积,可以提高抗干扰性。

4. 感应连线和感应焊盘优先布局。芯片靠近感应焊盘放置,感应连线直接引到感应焊盘(或弹簧焊盘),不同按键的感应连线不需要长度一致。感应连线线宽尽量小。感应连线周围不能走其他电源线和信号线。如果实在不能避免,其他走线要垂直跨过感应连线。感应焊盘之间至少留 5mm 间距,感应焊盘和铺地之间距离大于 1.5mm。

10.额定值

 工作温度
 -40 ~ +85° C

 存储温度
 -50 ~ +150° C

 电源电压
 -0.3 ~ +6.5V

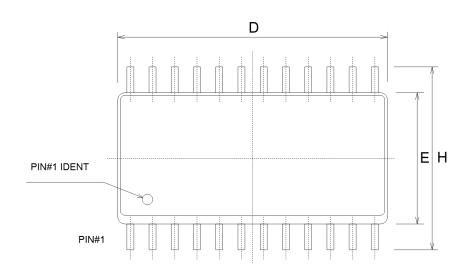
管脚最大电流 ±20mA

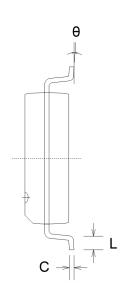
管脚电压 -0.3V ~ (Vcc+ 0.3) Volts

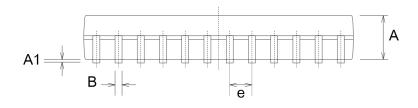
* 注意 超出额定值可能会导致芯片永久损坏

11.电气特性

TA = 25℃

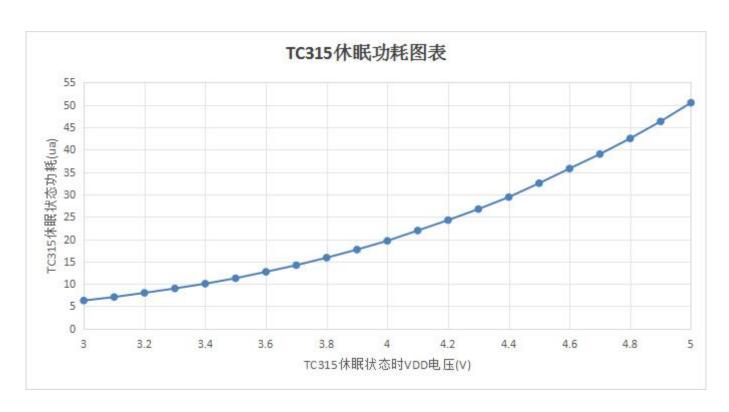

特性	符号	条件	最小值	典型值	最大值	单位
工作电压	Vcc		2.9		5. 5	V
电流消耗	Idd	VCC=5. OV		2. 15		mA
		VCC=3. OV		1.12		mA
		VCC=5. OV		51		UA
		&SLEEP				
		VCC=3. OV		6.2		UA
		&SLEEP				
上电稳定时间	Tini			600		ms
感应电容范围	CX				2. 5*CSEN	
输出阻抗	Zo	低电平		50		Ohm
(开漏输出)		高阻		100M		
输出灌电流	Isk	VCC=5V			10.0	mA
最小检测电容	delta_CX	CSEN=15pf		0.2		pF
采样周期	Tsi	正常工作状		20		ms
		态				
进入空闲时间	Tidle	无按键		18		S




12.ESD 特性

模式	极性	最大值	参考
		8000V	VDD
H.B.M	POS/NEG	8000V	VSS
		V0008	P to P
		500V	VDD
M.M	POS/NEG	500V	VSS
		500V	P to P

13.封装尺寸图 (SSOP-24)



	Dimens	ions In	Dimensions In Inches			
Symbol	Millimeters Min Max					
			Min	Max		
A	1.25	1.55	0.049	0.061		
A1	0.05	0. 25	0.002	0.010		
В	0. 194	0.314	0.008	0.012		

С	0.15	0. 25	0.006	0.010	
D	8.55	8. 75	0. 337	0. 344	
Е	3.80	4.00	0.015	0. 157	
е	0.6	635	0.025		
Н	5. 70	6. 30	0. 224	0. 248	
L	0.30	0.90	0.012	0. 035	
θ	0°	7°	0°	7°	

附录 1: TC315A 休眠模式功耗

附录 2: 通过 I2C 接口读写 TC315A 的 C 语言演示程序

1) I2C 写控制寄存器函数

bit i2c_write(unsigned dev_addr, unsigned reg_addr, unsigned char * src_buf, unsigned char len)

dev_addr 设置器件地址

reg addr 设置寄存器地址

scr buf 写入数据内容的首字节地址

len 写入数据内容的长度

举例: 将数据 0x93 写入 TC315A 的 CTRL0 寄存器(地址为 0x03) TC315A 的 ASEL 端口悬空

char buffer;

buffer=0x93;

i2c_write(0x40, 3, &buffer, 1);

2) I2C 读取按键信息寄存器函数

```
bit i2c read direct(unsigned dev addr,unsigned char * dest buf,unsigned char len)
    dev addr 设置器件地址
    reg addr 设置寄存器地址
    dest buf 读出数据的首字节地址
           读取数据的长度
   举例:读取 TC315A 按键信息 OUTPUT1 OUTPUT2 寄存器(地址为 0x00 0x01) TC315A 的 ASEL 端口悬空
         char buffer[2]=\{0,0\};
         i2c write(0x40, 0, &buffer, 0);
                                 //先设置读取寄存器地址为 0x00。如果上电后没有写过其它寄
存器,这个步骤可以省略。因为芯片默认的读取地址就是 0x00
         i2c read direct(0x40, &buffer, 2); //读取 0x00 的内容放入 buffer[0]中,0x01 的内容放入 buffer[1]中。
有按键时 buffer[2]相应位是 0, 无按键时 buffer[2]相应位是 1
//***************************
void i2c delay()//简单延时函数
   char i;
   for(i=0;i<2;i++); 
//*****************************
void i2c start() //开始信号 SCL 在高电平期间, SDA 一个下降沿则表示启动信号
   SDA=1; //释放 SDA 总线
   i2c delay();
   SCL=1;
   i2c delay();
   SDA=0;
   i2c delay();
   SCL=0;
   i2c delay();
//****************************
void i2c stop() //停止 SCL 在高电平期间, SDA 一个上升沿则表示停止信号
   SCL=0;
   SDA=0;
   i2c delay();
   SCL=1;
   i2c_delay();
   SDA=1;
   i2c delay();
//***************************
bit i2c_checkack() //应答 SCL 在高电平期间, SDA 被从设备拉为低电平表示应答
```



```
bit bit_temp;
   SCL=1;
   bit_temp=SDA;
   i2c_delay();
   if(bit temp)
       //无 ACK 回应
       return 0;
   SCL=0;
   return 1;
}
void i2c_sendack() //应答 SCL 在高电平期间, SDA 被从设备拉为低电平表示应答
{
   SDA=0;
   i2c_delay();
   SCL=1;
   i2c_delay();
   SCL=0;
   SDA=1;
}
void i2c sendnack() //应答 SCL 在高电平期间, SDA 被从设备拉为低电平表示应答
   SDA=1;
   i2c_delay();
   SCL=1;
   i2c_delay();
   SCL=0;
void i2c_write_byte(unsigned char date) //写一个字节
{
    unsigned char i,temp;
   temp=date;
    for(i=0;i<8;i++)
       temp=temp<<1;
       SDA=CY;
```



```
i2c delay();
      SCL=1;//拉高 SCL,此时 SDA 上的数据稳定
      i2c delay();
      SCL=0;//拉低 SCL, 因为只有在时钟信号为低电平期间按数据线上的高低电平状态才允许变化; 并在此
时和上一个循环的 scl=1 一起形成一个上升沿
   SDA=1;//释放 SDA 总线,接下来由从设备控制,比如从设备接收完数据后,在 SCL 为高时,拉低 SDA 作
为应答信号
   i2c_delay();
  ***********************
unsigned char i2c read byte()//读一个字节
{
   unsigned char i,k;
   for(i=0;i<8;i++)
      i2c delay();
      SCL=1;//上升沿时,IIC 设备将数据放在 sda 线上,并在高电平期间数据已经稳定,可以接收啦
      i2c_delay();
      k=(k<<1)|SDA;
      SCL=0;
   }
   return k;
//********************************
bit i2c_write(unsigned dev_addr, unsigned reg_addr, unsigned char * src_buf, unsigned char len)
{
   char c;
   i2c start();
 i2c write byte((dev addr<<1));//发送发送从设备地址 写操作
   if(~i2c checkack())
      return 0;
   i2c delay();
   i2c write byte(reg addr);//发送发送寄存器地址 写操作
   if(~i2c_checkack())
      return 0;
   i2c delay();
   for(c=0;c< len;c++)
```



```
i2c_write_byte(src_buf[c]);//发送缓冲区数据 写操作
      i2c checkack();//等待从设备的响应
        i2c_delay();
    }
  i2c_stop();//停止
    return 1;
}
bit i2c_read_direct(unsigned dev_addr,unsigned char * dest_buf,unsigned char len)
{
    char c;
  i2c start();//启动
  i2c_write_byte((dev_addr<<1)+1);//发送发送从设备地址 读操作
  if(~i2c_checkack())
        return 0;//等待从设备的响应
    i2c_delay();
    dest_buf[0]=i2c_read_byte();//获取数据
    for(c=1;c< len;c++)
    {
        i2c_sendack();
        i2c_delay();
        dest_buf[c]=i2c_read_byte();
    }
    i2c_sendnack();
    i2c_delay();
    i2c_stop();//停止
    return 1;
}
```